Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Neurosurg Pediatr ; : 1-7, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394651

ABSTRACT

OBJECTIVE: Abusive head trauma (AHT) is one of the most devastating forms of pediatric traumatic brain injury (TBI). It commonly presents with seizures, which may contribute to poor neurological outcome following trauma. Noninvasive near-infrared spectroscopy (NIRS) neuromonitoring may provide information on cerebral oxygenation and perfusion. In this study, the authors evaluated whether NIRS regional cerebral oxygen saturation (rSO2) values were associated with seizure activity confirmed by electroencephalography (EEG) and whether NIRS neuromonitoring could aid in seizure detection in patients with severe AHT. METHODS: The authors retrospectively analyzed pediatric patients aged ≤ 18 years who were admitted to a quaternary urban pediatric hospital from 2016 to 2022 with severe AHT, who received NIRS and EEG monitoring during their hospital course. They evaluated clinical presentation and hospital course, including imaging findings, EEG findings, and NIRS rSO2 values. RESULTS: Nineteen patients with severe AHT were monitored with both EEG and NIRS. The median age was 3.4 months, and 14 patients experienced seizures confirmed by EEG. On average, rSO2 values before, during, and after seizure did not differ significantly. However, within individual patients, bilateral regional NIRS rSO2 (bilateral forehead region) was seen to rise in the hour preceding seizure activity and during periods of frequent seizure activity, confirmed by EEG in the bilateral frontal-midline brain regions. CONCLUSIONS: To the best of the authors' knowledge, this is the largest study to analyze NIRS and seizures confirmed by EEG in the severe AHT population. The relationship between NIRS values and seizures in this series of pediatric patients with severe AHT suggests that, overall, regional NIRS cannot predict early seizures. However, increased cerebral oxygenation preceding seizure activity and during seizure activity may be detected by regional NIRS in certain patients with local seizure activity. Future studies with larger sample sizes may help elucidate the relationship between seizures and cerebral oxygenation in different regions in severe pediatric AHT.

2.
Neurology ; 102(5): e209134, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38350044

ABSTRACT

BACKGROUND AND OBJECTIVES: EEG and MRI features are independently associated with pediatric cardiac arrest (CA) outcomes, but it is unclear whether their combination improves outcome prediction. We aimed to assess the association of early EEG background category with MRI ischemia after pediatric CA and determine whether addition of MRI ischemia to EEG background features and clinical variables improves short-term outcome prediction. METHODS: This was a single-center retrospective cohort study of pediatric CA with EEG initiated ≤24 hours and MRI obtained ≤7 days of return of spontaneous circulation. Initial EEG background was categorized as normal, slow/disorganized, discontinuous/burst-suppression, or attenuated-featureless. MRI ischemia was defined as percentage of brain tissue with apparent diffusion coefficient (ADC) <650 × 10-6 mm2/s and categorized as high (≥10%) or low (<10%). Outcomes were mortality and unfavorable neurologic outcome (Pediatric Cerebral Performance Category increase ≥1 from baseline resulting in ICU discharge score ≥3). The Kruskal-Wallis test evaluated the association of EEG with MRI. Area under the receiver operating characteristic (AUROC) curve evaluated predictive accuracy. Logistic regression and likelihood ratio tests assessed multivariable outcome prediction. RESULTS: We evaluated 90 individuals. EEG background was normal in 16 (18%), slow/disorganized in 42 (47%), discontinuous/burst-suppressed in 12 (13%), and attenuated-featureless in 20 (22%) individuals. The median percentage of MRI ischemia was 5% (interquartile range 1-18); 32 (36%) individuals had high MRI ischemia burden. Twenty-eight (31%) individuals died, and 58 (64%) had unfavorable neurologic outcome. Worse EEG background category was associated with more MRI ischemia (p < 0.001). The combination of EEG background and MRI ischemia burden had higher predictive accuracy than EEG alone (AUROC: mortality: 0.92 vs 0.87, p = 0.03) or MRI alone (AUROC: mortality: 0.92 vs 0.84, p = 0.02; unfavorable: 0.83 vs 0.73, p < 0.01). Addition of percentage of MRI ischemia to clinical variables and EEG background category improved prediction for mortality (χ2 = 19.1, p < 0.001) and unfavorable neurologic outcome (χ2 = 4.8, p = 0.03) and achieved high predictive accuracy (AUROC: mortality: 0.97; unfavorable: 0.92). DISCUSSION: Early EEG background category was associated with MRI ischemia after pediatric CA. Combining EEG and MRI data yielded higher outcome predictive accuracy than either modality alone. The addition of MRI ischemia to clinical variables and EEG background improved short-term outcome prediction.


Subject(s)
Heart Arrest , Humans , Child , Retrospective Studies , Heart Arrest/complications , Heart Arrest/therapy , Magnetic Resonance Imaging , Prognosis , Diffusion Magnetic Resonance Imaging/methods , Neuroimaging , Electroencephalography/methods , Magnetic Resonance Spectroscopy , Ischemia/complications
3.
Crit Care Explor ; 5(11): e1003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37929184

ABSTRACT

Background: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an inflammatory disorder of the CNS with a variety of clinical manifestations, including cerebral edema. Case Summary: A 7-year-old boy presented with headaches, nausea, and somnolence. He was found to have cerebral edema that progressed to brainstem herniation. Invasive multimodality neuromonitoring was initiated to guide management of intracranial hypertension and cerebral hypoxia while he received empiric therapies for neuroinflammation. Workup revealed serum myelin oligodendrocyte glycoprotein antibodies. He survived with a favorable neurologic outcome. Conclusion: We describe a child who presented with cerebral edema and was ultimately diagnosed with MOGAD. Much of his management was guided using data from invasive multimodality neuromonitoring. Invasive multimodality neuromonitoring may have utility in managing life-threatening cerebral edema due to neuroinflammation.

4.
J Clin Monit Comput ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37851153

ABSTRACT

Electroencephalogram (EEG) can be used to assess depth of consciousness, but interpreting EEG can be challenging, especially in neonates whose EEG undergo rapid changes during the perinatal course. EEG can be processed into quantitative EEG (QEEG), but limited data exist on the range of QEEG for normal term neonates during wakefulness and sleep, baseline information that would be useful to determine changes during sedation or anesthesia. We aimed to determine the range of QEEG in neonates during awake, active sleep and quiet sleep states, and identified the ones best at discriminating between the three states. Normal neonatal EEG from 37 to 46 weeks were analyzed and classified as awake, quiet sleep, or active sleep. After processing and artifact removal, total power, power ratio, coherence, entropy, and spectral edge frequency (SEF) 50 and 90 were calculated. Descriptive statistics were used to summarize the QEEG in each of the three states. Receiver operating characteristic (ROC) curves were used to assess discriminatory ability of QEEG. 30 neonates were analyzed. QEEG were different between awake vs asleep states, but similar between active vs quiet sleep states. Entropy beta, delta2 power %, coherence delta2, and SEF50 were best at discriminating awake vs active sleep. Entropy beta had the highest AUC-ROC ≥ 0.84. Entropy beta, entropy delta1, theta power %, and SEF50 were best at discriminating awake vs quiet sleep. All had AUC-ROC ≥ 0.78. In active sleep vs quiet sleep, theta power % had highest AUC-ROC > 0.69, lower than the other comparisons. We determined the QEEG range in healthy neonates in different states of consciousness. Entropy beta and SEF50 were best at discriminating between awake and sleep states. QEEG were not as good at discriminating between quiet and active sleep. In the future, QEEG with high discriminatory power can be combined to further improve ability to differentiate between states of consciousness.

5.
World Neurosurg ; 178: 101-113, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37479026

ABSTRACT

OBJECTIVE: Gunshot wounds to the head (GSWH) are a cause of severe penetrating traumatic brain injury (TBI). Although multimodal neuromonitoring has been increasingly used in blunt pediatric TBI, its role in the pediatric population with GSWH is not known. We report on 3 patients who received multimodal neuromonitoring as part of clinical management at our institution and review the existing literature on pediatric GSWH. METHODS: We identified 3 patients ≤18 years of age who were admitted to a quaternary children's hospital from 2005 to 2021 with GSWH and received invasive intracranial pressure (ICP) and Pbto2 (brain tissue oxygenation) monitoring with or without noninvasive near-infrared spectroscopy (NIRS). We analyzed clinical and demographic characteristics, imaging findings, and ICP, Pbto2, cerebral perfusion pressure, and rSo2 (regional cerebral oxygen saturation) NIRS trends. RESULTS: All patients were male with an average admission Glasgow Coma Scale score of 4. One patient received additional NIRS monitoring. Episodes of intracranial hypertension (ICP ≥20 mm Hg) and brain tissue hypoxia (Pbto2 <15 mm Hg) or hyperemia (Pbto2 >35 mm Hg) frequently occurred independently of each other, requiring unique targeted treatments. rSo2 did not consistently mirror Pbto2. All children survived, with favorable Glasgow Outcome Scale-Extended score at 6 months after injury. CONCLUSIONS: Use of ICP and Pbto2 multimodality neuromonitoring enabled specific management for intracranial hypertension or brain tissue hypoxia episodes that occurred independently of one another. Multimodality neuromonitoring has not been studied extensively in pediatric GSWH; however, its use may provide a more complete picture of patient injury and prognosis without significant added procedural risk.


Subject(s)
Brain Injuries, Traumatic , Head Injuries, Penetrating , Hypoxia, Brain , Intracranial Hypertension , Wounds, Gunshot , Humans , Child , Male , Female , Oxygen , Wounds, Gunshot/diagnostic imaging , Wounds, Gunshot/therapy , Intracranial Pressure , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Intracranial Hypertension/diagnosis , Intracranial Hypertension/etiology , Intracranial Hypertension/therapy , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/therapy
6.
J Neuropathol Exp Neurol ; 82(8): 707-721, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37390808

ABSTRACT

Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.05 compared to sham-injured animals) up to 5 weeks postinjury. In the first week following single or repetitive brain injury, axonal and neuronal degeneration, and microglial activation were observed in the cortex, white matter, thalamus, and subiculum; the extent of the histopathologic damage was significantly greater in the repetitive-injured animals compared to single-injured animals. At 40 days postinjury, loss of cortical, white matter and hippocampal tissue was evident only in the repetitive-injured animals, along with evidence of microglial activation in the white matter tracts and thalamus. Axonal injury and neurodegeneration were evident in the thalamus up to 40 days postinjury in the repetitive-injured rats. These data demonstrate that while single closed head injury in the neonate rat is associated with pathologic alterations in the acute post-traumatic period, repetitive closed head injury results in sustained behavioral and pathologic deficits reminiscent of infants with abusive head trauma.


Subject(s)
Cognition Disorders , Head Injuries, Closed , Rats , Animals , Animals, Newborn , Microglia/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Head Injuries, Closed/complications , Head Injuries, Closed/pathology , Cognition/physiology , Disease Models, Animal
7.
Neurocrit Care ; 40(1): 205-214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37160847

ABSTRACT

BACKGROUND: Ketamine has traditionally been avoided for tracheal intubations (TIs) in patients with acute neurological conditions. We evaluate its current usage pattern in these patients and any associated adverse events. METHODS: We conducted a retrospective observational cohort study of critically ill children undergoing TI for neurological indications in 53 international pediatric intensive care units and emergency departments. We screened all intubations from 2014 to 2020 entered into the multicenter National Emergency Airway Registry for Children (NEAR4KIDS) registry database. Patients were included if they were under the age of 18 years and underwent TI for a primary neurological indication. Usage patterns and reported periprocedural composite adverse outcomes (hypoxemia < 80%, hypotension/hypertension, cardiac arrest, and dysrhythmia) were noted. RESULTS: Of 21,562 TIs, 2,073 (9.6%) were performed for a primary neurological indication, including 190 for traumatic brain injury/trauma. Patients received ketamine in 495 TIs (23.9%), which increased from 10% in 2014 to 41% in 2020 (p < 0.001). Ketamine use was associated with a coindication of respiratory failure, difficult airway history, and use of vagolytic agents, apneic oxygenation, and video laryngoscopy. Composite adverse outcomes were reported in 289 (13.9%) Tis and were more common in the ketamine group (17.0% vs. 13.0%, p = 0.026). After adjusting for location, patient age and codiagnoses, the presence of respiratory failure and shock, difficult airway history, provider demographics, intubating device, and the use of apneic oxygenation, vagolytic agents, and neuromuscular blockade, ketamine use was not significantly associated with increased composite adverse outcomes (adjusted odds ratio 1.34, 95% confidence interval CI 0.99-1.81, p = 0.057). This paucity of association remained even when only neurotrauma intubations were considered (10.6% vs. 7.7%, p = 0.528). CONCLUSIONS: This retrospective cohort study did not demonstrate an association between procedural ketamine use and increased risk of peri-intubation hypoxemia and hemodynamic instability in patients intubated for neurological indications.


Subject(s)
Ketamine , Respiratory Insufficiency , Child , Humans , Adolescent , Retrospective Studies , Ketamine/adverse effects , Critical Illness/therapy , Intubation, Intratracheal/adverse effects , Hypoxia , Respiratory Insufficiency/etiology
8.
Neurocrit Care ; 38(2): 470-485, 2023 04.
Article in English | MEDLINE | ID: mdl-36890340

ABSTRACT

Invasive neuromonitoring has become an important part of pediatric neurocritical care, as neuromonitoring devices provide objective data that can guide patient management in real time. New modalities continue to emerge, allowing clinicians to integrate data that reflect different aspects of cerebral function to optimize patient management. Currently, available common invasive neuromonitoring devices that have been studied in the pediatric population include the intracranial pressure monitor, brain tissue oxygenation monitor, jugular venous oximetry, cerebral microdialysis, and thermal diffusion flowmetry. In this review, we describe these neuromonitoring technologies, including their mechanisms of function, indications for use, advantages and disadvantages, and efficacy, in pediatric neurocritical care settings with respect to patient outcomes.


Subject(s)
Brain Injuries , Cerebrovascular Circulation , Child , Humans , Brain , Monitoring, Physiologic/methods , Intracranial Pressure
9.
Neurocrit Care ; 38(2): 242-253, 2023 04.
Article in English | MEDLINE | ID: mdl-36207491

ABSTRACT

BACKGROUND: Ketamine has traditionally been avoided as an induction agent for tracheal intubation in patients with neurologic conditions at risk for intracranial hypertension due to conflicting data in the literature. The objective of this study was to evaluate and compare the effects of ketamine versus other medications as the primary induction agent on peri-intubation neurologic, hemodynamic and respiratory associated events in pediatric patients with neurologic conditions at risk for intracranial hypertension. METHODS: This retrospective observational study enrolled patients < 18 years of age at risk for intracranial hypertension who were admitted to a quaternary children's hospital between 2015 and 2020. Associated events included neurologic, hemodynamic and respiratory outcomes comparing primary induction agents of ketamine versus non-ketamine for tracheal intubation. RESULTS: Of 143 children, 70 received ketamine as the primary induction agent prior to tracheal intubation. Subsequently after tracheal intubation, all the patients received adjunct analgesic and sedative medications (fentanyl, midazolam, and/or propofol) at doses that were inadequate to induce general anesthesia but would keep them comfortable for further diagnostic workup. There were no significant differences between associated neurologic events in the ketamine versus non-ketamine groups (p = 0.42). This included obtaining an emergent computed tomography scan (p = 0.28), an emergent trip to the operating room within 5 h of tracheal intubation (p = 0.6), and the need for hypertonic saline administration within 15 min of induction drug administration for tracheal intubation (p = 0.51). There were two patients who had clinical and imaging evidence of herniation, which was not more adversely affected by ketamine compared with other medications (p = 0.49). Of the 143 patients, 23 had pre-intubation and post-intubation intracranial pressure values recorded; 11 received ketamine, and 3 of these patients had intracranial hypertension that resolved or improved, whereas the remaining 8 children had intracranial pressure within the normal range that was not exacerbated by ketamine. There were no significant differences in overall associated hemodynamic or respiratory events during tracheal intubation and no 24-h mortality in either group. CONCLUSIONS: The administration of ketamine as the primary induction agent prior to tracheal intubation in combination with other agents after tracheal intubation in children at risk for intracranial hypertension was not associated with an increased risk of peri-intubation associated neurologic, hemodynamic or respiratory events compared with those who received other induction agents.


Subject(s)
Intracranial Hypertension , Ketamine , Humans , Child , Ketamine/therapeutic use , Intracranial Hypertension/drug therapy , Analgesics/therapeutic use , Fentanyl/adverse effects , Midazolam/therapeutic use
10.
J Neurosurg Pediatr ; : 1-11, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35623367

ABSTRACT

OBJECTIVE: Severe traumatic brain injury (TBI) is a leading cause of disability and death in the pediatric population. While intracranial pressure (ICP) monitoring is the gold standard in acute neurocritical care following pediatric severe TBI, brain tissue oxygen tension (PbtO2) monitoring may also help limit secondary brain injury and improve outcomes. The authors hypothesized that pediatric patients with severe TBI and ICP + PbtO2 monitoring and treatment would have better outcomes than those who underwent ICP-only monitoring and treatment. METHODS: Patients ≤ 18 years of age with severe TBI who received ICP ± PbtO2 monitoring at a quaternary children's hospital between 1998 and 2021 were retrospectively reviewed. The relationships between conventional measurements of TBI were evaluated, i.e., ICP, cerebral perfusion pressure (CPP), and PbtO2. Differences were analyzed between patients with ICP + PbtO2 versus ICP-only monitoring on hospital and pediatric intensive care unit (PICU) length of stay (LOS), length of intubation, Pediatric Intensity Level of Therapy scale score, and functional outcome using the Glasgow Outcome Score-Extended (GOS-E) scale at 6 months postinjury. RESULTS: Forty-nine patients, including 19 with ICP + PbtO2 and 30 with ICP only, were analyzed. There was a weak negative association between ICP and PbtO2 (ß = -0.04). Conversely, there was a strong positive correlation between CPP ≥ 40 mm Hg and PbtO2 ≥ 15 and ≥ 20 mm Hg (ß = 0.30 and ß = 0.29, p < 0.001, respectively). An increased number of events of cerebral PbtO2 < 15 mm Hg or < 20 mm Hg were associated with longer hospital (p = 0.01 and p = 0.022, respectively) and PICU (p = 0.015 and p = 0.007, respectively) LOS, increased duration of mechanical ventilation (p = 0.015 when PbtO2 < 15 mm Hg), and an unfavorable 6-month GOS-E score (p = 0.045 and p = 0.022, respectively). An increased number of intracranial hypertension episodes (ICP ≥ 20 mm Hg) were associated with longer hospital (p = 0.007) and PICU (p < 0.001) LOS and longer duration of mechanical ventilation (p < 0.001). Lower minimum hourly and average daily ICP values predicted favorable GOS-E scores (p < 0.001 for both). Patients with ICP + PbtO2 monitoring experienced longer PICU LOS (p = 0.018) compared to patients with ICP-only monitoring, with no significant GOS-E score difference between groups (p = 0.733). CONCLUSIONS: An increased number of cerebral hypoxic episodes and an increased number of intracranial hypertension episodes resulted in longer hospital LOS and longer duration of mechanical ventilator support. An increased number of cerebral hypoxic episodes also correlated with less favorable functional outcomes. In contrast, lower minimum hourly and average daily ICP values, but not the number of intracranial hypertension episodes, were associated with more favorable functional outcomes. There was a weak correlation between ICP and PbtO2, supporting the importance of multimodal invasive neuromonitoring in pediatric severe TBI.

11.
J Neurotrauma ; 39(13-14): 979-998, 2022 07.
Article in English | MEDLINE | ID: mdl-35293260

ABSTRACT

Traumatic brain injury (TBI) in children <4 years of age leads to long-term deficits in cognitive and learning abilities that can persist or even worsen as these children age into adolescence. In this study, the role of glucocorticoid receptor (GR) function in the dorsal hippocampus (DH) in hippocampal-dependent cognitive function and synaptic plasticity were assessed following injury to the 11-day-old rat. Brain injury produced significant impairments in spatial learning and memory in the Morris water maze in male and female rats at 1-month post-injury (adolescence), which was accompanied by impairments in induction and maintenance of long-term potentiation (LTP) in the CA1 region of the DH. Brain injury resulted in a significant decrease in the expression of the glucocorticoid-inducible gene, serum- and glucocorticoid-kinase 1 (sgk1), suggestive of an impairment in GR transcriptional activity within the hippocampus. Lentiviral transfection of the human GR (hGR) in the DH improved spatial learning and memory in the Morris water maze and attenuated LTP deficits following TBI. GR overexpression in the DH was also associated with a significant increase in the mRNA expression levels of sgk1, and the glutamate receptor subunits GluA1 and GluA2 within the hippocampus. Overall, these findings support an important role for dorsal hippocampal GR function in learning and memory deficits following pediatric TBI and suggest that these effects may be related to the regulation of glutamate receptor subunit expression in the DH.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Child , Female , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Hippocampus , Humans , Long-Term Potentiation/physiology , Male , Maze Learning , Neuronal Plasticity/physiology , Rats , Receptors, Glucocorticoid/metabolism , Receptors, Glutamate/metabolism , Spatial Learning
12.
J Neurosci Res ; 100(2): 490-505, 2022 02.
Article in English | MEDLINE | ID: mdl-34850450

ABSTRACT

Following mild traumatic brain injury (TBI), high school and collegiate-aged females tend to report more emotional symptoms than males. Adolescent male and female rats (35 days old) were subjected to mild TBI and evaluated for anxiety- and depression-like behaviors using the elevated plus maze and forced swim test (FST), respectively, and cellular alterations. Injured brains did not exhibit an overt lesion, atrophy of tissue or astrocytic reactivity underneath the impact site at 6-week post-injury, suggestive of the mild nature of trauma. Neither male nor female brain-injured rats exhibited anxiety-like behavior at 2 or 6 weeks, regardless of estrous phase at the time of behavior testing. Brain-injured male rats did not exhibit any alterations in immobility, swimming and climbing times in the FST compared to sham-injured rats at either 2- or 6-week post-injury. Brain-injured female rats did, however, exhibit an increase in immobility (in the absence of changes in swimming and climbing times) in the FST at 6 weeks post-injury only during the estrus phase of the estrous cycle, suggestive of a depression-like phenotype. Combined administration of the estrogen receptor antagonist, tamoxifen, and the progesterone receptor antagonist, mifepristone, during proestrus was able to prevent the depression-like phenotype observed during estrus. Taken together, these data suggest that female rats may be more vulnerable to exhibiting behavioral deficits following mild TBI and that estrous phase may play a role in depression-like behavior.


Subject(s)
Brain Concussion , Depression , Animals , Anxiety/psychology , Behavior, Animal , Brain Concussion/complications , Depression/etiology , Depression/psychology , Estrus , Female , Male , Rats , Swimming/psychology
13.
World Neurosurg ; 158: e196-e205, 2022 02.
Article in English | MEDLINE | ID: mdl-34718196

ABSTRACT

BACKGROUND: Urgent neurosurgical interventions for pediatric patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are rare. These cases pose additional stress on a potentially vulnerable dysregulated inflammatory response that can place the child at risk of further clinical deterioration. Our aim was to describe the perioperative course of SARS-CoV-2-positive pediatric patients who had required an urgent neurosurgical intervention. METHODS: We retrospectively analyzed pediatric patients aged ≤18 years who had been admitted to a quaternary children's hospital with a positive polymerase chain reaction test result for SARS-CoV-2 virus from March 2020 to October 2021. The clinical characteristics, anesthetic and neurosurgical operative details, surgical outcomes, and non-neurological symptoms were collected and analyzed. RESULTS: We identified 8 SARS-CoV-2-positive patients with a mean age of 8.83 years (median, 8.5 years; range, 0.58-18 years). Of the 8 patients, 6 were male. All children had had mild or asymptomatic coronavirus disease 2109. The anesthetic and surgical courses for these patients were, overall, uncomplicated. All the patients had been admitted to a specialized isolation unit in the pediatric intensive care unit for cardiopulmonary and neurological monitoring. The use of increased protective personal equipment during anesthesia and surgery did not impede a successful neurosurgical operation. CONCLUSIONS: SARS-CoV-2-positive pediatric patients with minimal coronavirus disease 2019-related symptoms who require urgent neurosurgical interventions face unique challenges regarding their anesthetic status, operative delays due to SARS-CoV-2 polymerase chain reaction testing, and requirements for additional protective personal equipment. Despite these clinical challenges, the patients in our study had not experienced adverse postoperative consequences, and no healthcare professional involved in their care had contracted the virus.


Subject(s)
COVID-19 , Neurosurgical Procedures , Asymptomatic Diseases , Child , Female , Health Personnel , Humans , Male , Retrospective Studies , SARS-CoV-2
14.
Front Neurol ; 12: 704576, 2021.
Article in English | MEDLINE | ID: mdl-34594294

ABSTRACT

Introduction: Pediatric severe traumatic brain injury (TBI) is one of the leading causes of disability and death. One of the classic pathoanatomic brain injury lesions following severe pediatric TBI is diffuse (multifocal) axonal injury (DAI). In this single institution study, our overarching goal was to describe the clinical characteristics and long-term outcome trajectory of severe pediatric TBI patients with DAI. Methods: Pediatric patients (<18 years of age) with severe TBI who had DAI were retrospectively reviewed. We evaluated the effect of age, sex, Glasgow Coma Scale (GCS) score, early fever ≥ 38.5°C during the first day post-injury, the extent of ICP-directed therapy needed with the Pediatric Intensity Level of Therapy (PILOT) score, and MRI within the first week following trauma and analyzed their association with outcome using the Glasgow Outcome Score-Extended (GOS-E) scale at discharge, 6 months, 1, 5, and 10 years following injury. Results: Fifty-six pediatric patients with severe traumatic DAI were analyzed. The majority of the patients were >5 years of age and male. There were 2 mortalities. At discharge, 56% (30/54) of the surviving patients had unfavorable outcome. Sixty five percent (35/54) of surviving children were followed up to 10 years post-injury, and 71% (25/35) of them made a favorable recovery. Early fever and extensive DAI on MRI were associated with worse long-term outcomes. Conclusion: We describe the long-term trajectory outcome of severe pediatric TBI patients with pure DAI. While this was a single institution study with a small sample size, the majority of the children survived. Over one-third of our surviving children were lost to follow-up. Of the surviving children who had follow-up for 10 years after injury, the majority of these children made a favorable recovery.

15.
J Neurosurg Pediatr ; 29(1): 40-47, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34598159

ABSTRACT

OBJECTIVE: Digital subtraction angiography (DSA) is commonly performed after pial synangiosis surgery for pediatric moyamoya disease to assess the degree of neovascularization. However, angiography is invasive, and the risk of ionizing radiation is a concern in children. In this study, the authors aimed to identify whether arterial spin labeling (ASL) can predict postoperative angiogram grading. In addition, they sought to determine whether patients who underwent ASL imaging without DSA had similar postoperative outcomes when compared with patients who received ASL imaging and postoperative DSA. METHODS: The medical records of pediatric patients who underwent pial synangiosis for moyamoya disease at a quaternary children's hospital were reviewed during a 10-year period. ASL-only and ASL+DSA cohorts were analyzed. The frequency of preoperative and postoperative symptoms was analyzed within each cohort. Three neuroradiologists assigned a visual ASL grade for each patient indicating the change from the preoperative to postoperative ASL perfusion sequences. A postoperative neovascularization grade was also assigned for patients who underwent DSA. RESULTS: Overall, 21 hemispheres of 14 patients with ASL only and 14 hemispheres of 8 patients with ASL+DSA were analyzed. The groups had similar rates of MRI evidence of acute or chronic stroke preoperatively (61.9% in the ASL-only group and 64.3% in the ASL+DSA group). In the entire cohort, transient ischemic attack (TIA) (p = 0.027), TIA composite (TIA or unexplained neurological symptoms; p = 0.0006), chronic headaches (p = 0.035), aphasia (p = 0.019), and weakness (p = 0.001) all had decreased frequency after intervention. The authors found a positive association between revascularization observed on DSA and the visual ASL grading (p = 0.048). The visual ASL grades in patients with an angiogram indicating robust neovascularization demonstrated improved perfusion when compared with the ASL grades of patients with a poor neovascularization. CONCLUSIONS: Noninvasive ASL perfusion imaging had an association with postoperative DSA neoangiogenesis following pial synangiosis surgery in children. There were no significant postoperative stroke differences between the ASL-only and ASL+DSA cohorts. Both cohorts demonstrated significant improvement in preoperative symptoms after surgery. Further study in larger cohorts is necessary to determine whether the results of this study are validated in order to circumvent the invasive catheter angiogram.


Subject(s)
Cerebral Angiography/methods , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Neuroimaging/methods , Perfusion Imaging/methods , Angiography, Digital Subtraction , Cerebral Revascularization/methods , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Spin Labels
16.
J Neurosurg Pediatr ; 28(3): 335-343, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34243155

ABSTRACT

OBJECTIVE: Single-ventricle congenital heart disease (CHD) in pediatric patients with Glenn and Fontan physiology represents a unique physiology requiring the surgical diversion of the systemic venous return from the superior vena cava (Glenn) and then the inferior vena cava (Fontan) directly to the pulmonary arteries. Because many of these patients are on chronic anticoagulation therapy and may have right-to-left shunts, arrhythmias, or lymphatic disorders that predispose them to bleeding and/or clotting, they are at risk of experiencing neurological injury requiring intubation and positive pressure ventilation, which can significantly hamper pulmonary blood flow and cardiac output. The aim of this study was to describe the complex neurological and cardiopulmonary interactions of these pediatric patients after acute central nervous system (CNS) injury. METHODS: The authors retrospectively analyzed the records of pediatric patients who had been admitted to a quaternary children's hospital with CHD palliated to bidirectional Glenn (BDG) or Fontan circulation and acute CNS injury and who had undergone intubation and mechanical ventilation. Patients who had been admitted from 2005 to 2019 were included in the study. Clinical characteristics, surgical outcomes, cardiovascular and pulmonary data, and intracranial pressure data were collected and analyzed. RESULTS: Nine pediatric single-ventricle patients met the study inclusion criteria. All had undergone the BDG procedure, and the majority (78%) were status post Fontan palliation. The mean age was 7.4 years (range 1.3-17.3 years). At the time of acute CNS injury, which included traumatic brain injury, intracranial hemorrhage, and cerebral infarct, the median time interval from the most recent cardiac surgical procedure was 3 years (range 2 weeks-11 years). Maintaining normocarbia to mild hypercarbia for most patients during intubation periods did not cause neurological deterioration, and hemodynamic profiles were more favorable as compared to periods of hypocarbia. Hypocarbia was associated with unfavorable hemodynamics but was necessary to decrease intracranial hypertension. Most patients were managed using low mean airway pressure (MAWP) in order to minimize the impact on preload and cardiac output. CONCLUSIONS: The authors highlight the complex neurological and cardiopulmonary interactions with respect to partial pressure of arterial CO2 (PaCO2) and MAWP when pediatric CHD patients with single-ventricle physiology require mechanical ventilation. The study data demonstrated that tight control of PaCO2 and minimizing MAWP with the goal of early extubation may be beneficial in this population. A multidisciplinary team of pediatric critical care intensivists, cardiac intensivists and anesthesiologists, and pediatric neurosurgeons and neurologists are recommended to ensure the best possible outcomes.

17.
eNeuro ; 8(3)2021.
Article in English | MEDLINE | ID: mdl-34035071

ABSTRACT

Pediatric traumatic brain injury (TBI) results in heightened risk for social deficits that can emerge during adolescence and adulthood. A moderate TBI in male and female rats on postnatal day 11 (equivalent to children below the age of 4) resulted in impairments in social novelty recognition, defined as the preference for interacting with a novel rat compared with a familiar rat, but not sociability, defined as the preference for interacting with a rat compared with an object in the three-chamber test when tested at four weeks (adolescence) and eight weeks (adulthood) postinjury. The deficits in social recognition were not accompanied by deficits in novel object recognition memory and were associated with a decrease in the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from pyramidal neurons within Layer II/III of the medial prefrontal cortex (mPFC). Whereas TBI did not affect the expression of oxytocin (OXT) or the OXT receptor (OXTR) mRNAs in the hypothalamus and mPFC, respectively, intranasal administration of OXT before behavioral testing was found to reduce impairments in social novelty recognition and increase IPSC frequency in the mPFC in brain-injured animals. These results suggest that TBI-induced deficits in social behavior may be linked to increased excitability of neurons in the mPFC and suggests that the regulation of GABAergic neurotransmission in this region as a potential mechanism underlying these deficits.


Subject(s)
Brain Injuries, Traumatic , Oxytocin , Administration, Intranasal , Adult , Animals , Brain Injuries, Traumatic/drug therapy , Child , Female , Humans , Inhibitory Postsynaptic Potentials , Male , Prefrontal Cortex , Rats , Social Behavior
18.
Front Neurol ; 11: 601286, 2020.
Article in English | MEDLINE | ID: mdl-33343501

ABSTRACT

There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.

19.
J Neurosurg Pediatr ; 26(5): 465-475, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32679558

ABSTRACT

OBJECTIVE: Head of bed (HOB) elevation to 30° after severe traumatic brain injury (TBI) has become standard positioning across all age groups. This maneuver is thought to minimize the risk of elevated ICP in the hopes of decreasing cerebral blood and fluid volume and increasing cerebral venous outflow with improvement in jugular venous drainage. However, HOB elevation is based on adult population data due to a current paucity of pediatric TBI studies regarding HOB management. In this prospective study of pediatric patients with severe TBI, the authors investigated the role of different head positions on intracranial pressure (ICP), cerebral perfusion pressure (CPP), and cerebral venous outflow through the internal jugular veins (IJVs) on postinjury days 2 and 3 because these time periods are considered the peak risk for intracranial hypertension. METHODS: Patients younger than 18 years with a Glasgow Coma Scale score ≤ 8 after severe TBI were prospectively recruited at a single quaternary pediatric intensive care unit. All patients had an ICP monitor placed, and no other neurosurgical procedure was performed. On the 2nd and 3rd days postinjury, the degree of HOB elevation was varied between 0° (head-flat or horizontal), 10°, 20°, 30°, 40°, and 50° while ICP, CPP, and bilateral IJV blood flows were recorded. RESULTS: Eighteen pediatric patients with severe TBI were analyzed. On each postinjury day, 13 of the 18 patients had at least 1 optimal HOB position (the position that simultaneously demonstrated the lowest ICP and the highest CPP). Six patients on each postinjury day had 30° as the optimal HOB position, with only 2 being the same patient on both postinjury days. On postinjury day 2, 3 patients had more than 1 optimal HOB position, while 5 patients did not have an optimal position. On postinjury day 3, 2 patients had more than 1 optimal HOB position while 5 patients did not have an optimal position. Interestingly, 0° (head-flat or horizontal) was the optimal HOB position in 2 patients on postinjury day 2 and 3 patients on postinjury day 3. The optimal HOB position demonstrated lower right IJV blood flow than a nonoptimal position on both postinjury days 2 (p = 0.0023) and 3 (p = 0.0033). There was no significant difference between optimal and nonoptimal HOB positions in the left IJV blood flow. CONCLUSIONS: In pediatric patients with severe TBI, the authors demonstrated that the optimal HOB position (which decreases ICP and improves CPP) is not always at 30°. Instead, the optimal HOB should be individualized for each pediatric TBI patient on a daily basis.

20.
Exp Neurol ; 330: 113329, 2020 08.
Article in English | MEDLINE | ID: mdl-32335121

ABSTRACT

Traumatic brain injury (TBI) in children younger than 4 years old results in cognitive and psychosocial deficits in adolescence and adulthood. At 4 weeks following closed head injury on postnatal day 11, male and female rats exhibited impairment in novel object recognition memory (NOR) along with an increase in open arm time in the elevated plus maze (EPM), suggestive of risk-taking behaviors. This was accompanied by an increase in intrinsic excitability and frequency of spontaneous excitatory post-synaptic currents (EPSCs), and a decrease in the frequency of spontaneous inhibitory post-synaptic currents in layer 2/3 neurons within the medial prefrontal cortex (PFC), a region that is implicated in both object recognition and risk-taking behaviors. Treatment with progesterone for the first week after brain injury improved NOR memory at the 4-week time point in both sham and brain-injured rats and additionally attenuated the injury-induced increase in the excitability of neurons and the frequency of spontaneous EPSCs. The effect of progesterone on cellular excitability changes after injury may be related to its ability to decrease the mRNA expression of the ß3 subunit of the voltage-gated sodium channel and increase the expression of the neuronal excitatory amino acid transporter 3 in the medial PFC in sham- and brain-injured animals and also increase glutamic acid decarboxylase mRNA expression in sham- but not brain-injured animals. Progesterone treatment did not affect injury-induced changes in the EPM test. These results demonstrate that administration of progesterone immediately after TBI in 11-day-old rats reduces cognitive deficits in adolescence, which may be mediated by progesterone-mediated regulation of excitatory signaling mechanisms within the medial PFC.


Subject(s)
Brain Injuries, Traumatic/complications , Cognitive Dysfunction/etiology , Excitatory Postsynaptic Potentials/drug effects , Neurons/drug effects , Progesterone/pharmacology , Animals , Animals, Newborn , Brain Injuries, Traumatic/physiopathology , Cognitive Dysfunction/physiopathology , Female , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL